3.5.73 \(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx\) [473]

3.5.73.1 Optimal result
3.5.73.2 Mathematica [C] (warning: unable to verify)
3.5.73.3 Rubi [A] (verified)
3.5.73.4 Maple [B] (verified)
3.5.73.5 Fricas [C] (verification not implemented)
3.5.73.6 Sympy [F(-1)]
3.5.73.7 Maxima [F(-1)]
3.5.73.8 Giac [F]
3.5.73.9 Mupad [F(-1)]

3.5.73.1 Optimal result

Integrand size = 43, antiderivative size = 193 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx=\frac {(9 A+B-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac {(3 A+B+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}-\frac {(A-B+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {(6 A-B-4 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}-\frac {(9 A+B-C) \sqrt {\cos (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )} \]

output
1/10*(9*A+B-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(s 
in(1/2*d*x+1/2*c),2^(1/2))/a^3/d+1/6*(3*A+B+C)*(cos(1/2*d*x+1/2*c)^2)^(1/2 
)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d-1/5*(A-B+ 
C)*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^3-1/15*(6*A-B-4*C)*sin(d 
*x+c)*cos(d*x+c)^(1/2)/a/d/(a+a*cos(d*x+c))^2-1/10*(9*A+B-C)*sin(d*x+c)*co 
s(d*x+c)^(1/2)/d/(a^3+a^3*cos(d*x+c))
 
3.5.73.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.71 (sec) , antiderivative size = 1448, normalized size of antiderivative = 7.50 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx =\text {Too large to display} \]

input
Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + 
 a*Cos[c + d*x])^3),x]
 
output
(-2*A*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, S 
in[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Si 
n[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan 
[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*(a + a*Cos[c + d*x])^3 
*Sqrt[1 + Cot[c]^2]) - (2*B*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*HypergeometricPF 
Q[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTa 
n[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*S 
in[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3* 
d*(a + a*Cos[c + d*x])^3*Sqrt[1 + Cot[c]^2]) - (2*C*Cos[c/2 + (d*x)/2]^6*C 
sc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]* 
Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqr 
t[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x 
 - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x])^3*Sqrt[1 + Cot[c]^2]) + (Co 
s[c/2 + (d*x)/2]^6*Sqrt[Cos[c + d*x]]*((-4*(9*A + B - C)*Csc[c])/(5*d) - ( 
4*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(6*A*Sin[(d*x)/2] - B*Sin[(d*x)/2] - 4*C*S 
in[(d*x)/2]))/(15*d) - (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(9*A*Sin[(d*x)/2] + 
B*Sin[(d*x)/2] - C*Sin[(d*x)/2]))/(5*d) - (2*Sec[c/2]*Sec[c/2 + (d*x)/2]^5 
*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/(5*d) - (4*(6*A - B - 
 4*C)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(15*d) - (2*(A - B + C)*Sec[c/2 + (d* 
x)/2]^4*Tan[c/2])/(5*d)))/(a + a*Cos[c + d*x])^3 - (9*A*Cos[c/2 + (d*x)...
 
3.5.73.3 Rubi [A] (verified)

Time = 1.19 (sec) , antiderivative size = 208, normalized size of antiderivative = 1.08, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.302, Rules used = {3042, 3520, 27, 3042, 3457, 3042, 3457, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3520

\(\displaystyle \frac {\int \frac {a (9 A+B-C)-a (3 A-3 B-7 C) \cos (c+d x)}{2 \sqrt {\cos (c+d x)} (\cos (c+d x) a+a)^2}dx}{5 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (9 A+B-C)-a (3 A-3 B-7 C) \cos (c+d x)}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)^2}dx}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (9 A+B-C)-a (3 A-3 B-7 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\int \frac {a^2 (21 A+4 B+C)-a^2 (6 A-B-4 C) \cos (c+d x)}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {2 a (6 A-B-4 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {a^2 (21 A+4 B+C)-a^2 (6 A-B-4 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}-\frac {2 a (6 A-B-4 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\frac {\frac {\int \frac {5 (3 A+B+C) a^3+3 (9 A+B-C) \cos (c+d x) a^3}{2 \sqrt {\cos (c+d x)}}dx}{a^2}-\frac {3 a^2 (9 A+B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (6 A-B-4 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {\int \frac {5 (3 A+B+C) a^3+3 (9 A+B-C) \cos (c+d x) a^3}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {3 a^2 (9 A+B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (6 A-B-4 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\int \frac {5 (3 A+B+C) a^3+3 (9 A+B-C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^3}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {3 a^2 (9 A+B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (6 A-B-4 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {\frac {5 a^3 (3 A+B+C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 a^3 (9 A+B-C) \int \sqrt {\cos (c+d x)}dx}{2 a^2}-\frac {3 a^2 (9 A+B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (6 A-B-4 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {5 a^3 (3 A+B+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a^3 (9 A+B-C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {3 a^2 (9 A+B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (6 A-B-4 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {\frac {5 a^3 (3 A+B+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a^3 (9 A+B-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {3 a^2 (9 A+B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (6 A-B-4 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {\frac {10 a^3 (3 A+B+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a^3 (9 A+B-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {3 a^2 (9 A+B-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (6 A-B-4 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

input
Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Cos 
[c + d*x])^3),x]
 
output
-1/5*((A - B + C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x]) 
^3) + ((-2*a*(6*A - B - 4*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d*(a + a* 
Cos[c + d*x])^2) + (((6*a^3*(9*A + B - C)*EllipticE[(c + d*x)/2, 2])/d + ( 
10*a^3*(3*A + B + C)*EllipticF[(c + d*x)/2, 2])/d)/(2*a^2) - (3*a^2*(9*A + 
 B - C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])))/(3*a^2) 
)/(10*a^2)
 

3.5.73.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3520
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A - b*B + a*C)*Cos[e + f*x]*(a + b* 
Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x 
] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c 
+ d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*(b*c*m + a 
*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c 
*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c 
^2 - d^2, 0] && LtQ[m, -2^(-1)]
 
3.5.73.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(623\) vs. \(2(229)=458\).

Time = 8.10 (sec) , antiderivative size = 624, normalized size of antiderivative = 3.23

method result size
default \(\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (108 A \left (\cos ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-30 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+54 A \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+12 B \left (\cos ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-10 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 B \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 \left (\cos ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) C -10 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-6 C \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-138 A \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-22 B \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 C \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+24 A \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 B \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+24 C \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 A \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+7 B \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-17 C \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 A -3 B +3 C \right )}{60 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(624\)

input
int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+cos(d*x+c)*a)^3/cos(d*x+c)^(1/2),x, 
method=_RETURNVERBOSE)
 
output
1/60*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(108*A*cos(1/ 
2*d*x+1/2*c)^8-30*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+ 
1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5+54*A*c 
os(1/2*d*x+1/2*c)^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+ 
1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+12*B*cos(1/2*d*x+1/2*c)^8-1 
0*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ellipti 
cF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5+6*B*cos(1/2*d*x+1/2*c) 
^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Elliptic 
E(cos(1/2*d*x+1/2*c),2^(1/2))-12*cos(1/2*d*x+1/2*c)^8*C-10*C*(sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/ 
2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5-6*C*cos(1/2*d*x+1/2*c)^5*(sin(1/2*d*x+1 
/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2 
*c),2^(1/2))-138*A*cos(1/2*d*x+1/2*c)^6-22*B*cos(1/2*d*x+1/2*c)^6+2*C*cos( 
1/2*d*x+1/2*c)^6+24*A*cos(1/2*d*x+1/2*c)^4+6*B*cos(1/2*d*x+1/2*c)^4+24*C*c 
os(1/2*d*x+1/2*c)^4+3*A*cos(1/2*d*x+1/2*c)^2+7*B*cos(1/2*d*x+1/2*c)^2-17*C 
*cos(1/2*d*x+1/2*c)^2+3*A-3*B+3*C)/a^3/cos(1/2*d*x+1/2*c)^5/(-2*sin(1/2*d* 
x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1 
/2*c)^2-1)^(1/2)/d
 
3.5.73.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 522, normalized size of antiderivative = 2.70 \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx=-\frac {2 \, {\left (3 \, {\left (9 \, A + B - C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (33 \, A + 2 \, B - 7 \, C\right )} \cos \left (d x + c\right ) + 45 \, A - 5 \, B - 5 \, C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 5 \, {\left (\sqrt {2} {\left (3 i \, A + i \, B + i \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (3 i \, A + i \, B + i \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (3 i \, A + i \, B + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (3 i \, A + i \, B + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, {\left (\sqrt {2} {\left (-3 i \, A - i \, B - i \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (-3 i \, A - i \, B - i \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (-3 i \, A - i \, B - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-3 i \, A - i \, B - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, {\left (\sqrt {2} {\left (-9 i \, A - i \, B + i \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (-9 i \, A - i \, B + i \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (-9 i \, A - i \, B + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-9 i \, A - i \, B + i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (\sqrt {2} {\left (9 i \, A + i \, B - i \, C\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (9 i \, A + i \, B - i \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (9 i \, A + i \, B - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (9 i \, A + i \, B - i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{60 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

input
integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^3/cos(d*x+c)^(1 
/2),x, algorithm="fricas")
 
output
-1/60*(2*(3*(9*A + B - C)*cos(d*x + c)^2 + 2*(33*A + 2*B - 7*C)*cos(d*x + 
c) + 45*A - 5*B - 5*C)*sqrt(cos(d*x + c))*sin(d*x + c) + 5*(sqrt(2)*(3*I*A 
 + I*B + I*C)*cos(d*x + c)^3 + 3*sqrt(2)*(3*I*A + I*B + I*C)*cos(d*x + c)^ 
2 + 3*sqrt(2)*(3*I*A + I*B + I*C)*cos(d*x + c) + sqrt(2)*(3*I*A + I*B + I* 
C))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*(sqrt(2) 
*(-3*I*A - I*B - I*C)*cos(d*x + c)^3 + 3*sqrt(2)*(-3*I*A - I*B - I*C)*cos( 
d*x + c)^2 + 3*sqrt(2)*(-3*I*A - I*B - I*C)*cos(d*x + c) + sqrt(2)*(-3*I*A 
 - I*B - I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 
 3*(sqrt(2)*(-9*I*A - I*B + I*C)*cos(d*x + c)^3 + 3*sqrt(2)*(-9*I*A - I*B 
+ I*C)*cos(d*x + c)^2 + 3*sqrt(2)*(-9*I*A - I*B + I*C)*cos(d*x + c) + sqrt 
(2)*(-9*I*A - I*B + I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0 
, cos(d*x + c) + I*sin(d*x + c))) + 3*(sqrt(2)*(9*I*A + I*B - I*C)*cos(d*x 
 + c)^3 + 3*sqrt(2)*(9*I*A + I*B - I*C)*cos(d*x + c)^2 + 3*sqrt(2)*(9*I*A 
+ I*B - I*C)*cos(d*x + c) + sqrt(2)*(9*I*A + I*B - I*C))*weierstrassZeta(- 
4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^3*d*c 
os(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)
 
3.5.73.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx=\text {Timed out} \]

input
integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**3/cos(d*x+c)* 
*(1/2),x)
 
output
Timed out
 
3.5.73.7 Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx=\text {Timed out} \]

input
integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^3/cos(d*x+c)^(1 
/2),x, algorithm="maxima")
 
output
Timed out
 
3.5.73.8 Giac [F]

\[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^3/cos(d*x+c)^(1 
/2),x, algorithm="giac")
 
output
integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^3* 
sqrt(cos(d*x + c))), x)
 
3.5.73.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3} \,d x \]

input
int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a*cos 
(c + d*x))^3),x)
 
output
int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a*cos 
(c + d*x))^3), x)